CRAFTS TECHNOLOGY

COMPOSITE CUTTING SOLUTIONS (IN PARTNERSHIP WITH FIVES)

MAY 24TH, 2021

JEFFREY ROBERTS - VICE PRESIDENT OF ENGINEERING

PRESENTER

Jeffrey Roberts Vice President of Engineering

- Masters of Engineering Purdue University
 - Material Science & Business Management
- Bachelors of Mechanical Engineering University of Iowa
- 10 Years with Crafts Technology
- 4 Patents / Provisional Patents
- 2 Daughters 3 Years & 2 Years
- Enjoys Running, Golf, Wood Working, Whiskey

COMPANY OVERVIEW

- Our vision is to deliver the most advanced systems & tooling that continually enhance the utilization & performance of industrial equipment.
 - Values
 - Transparency
 - Innovation
 - Integrity
 - Continuous Improvement
 - Work Ethic
 - Teamwork
 - Accountability

COMPANY OVERVIEW

HYPERION
MATERIALS &
TECHNOLOGIES
COMPANY

- Roots dating back to 1860, Crafts Technology has a longstanding history of technology & manufacturing innovation.
- Company has evolved into a market leading manufacturer of tooling & components from super-hard materials, including Tungsten Carbide, Advanced Ceramics, and PCD (Polycrystalline Diamond)
- Subject Matter Expertise from Engineering,
 Manufacturing, and Materials Engineering offers a unique
 mix of value add to end customers.

Key Facts

- Founded: 1893
- Headquarters: Elk Grove Village, IL
- Ownership: Hyperion Materials & Technologies
- Key Industries: Fluid Dispensing, Aerospace, Automotive,
 Wire & Spring, Telecomm, Non-Woven

Products & Technology

- Knives, Anvils, Cutters, Slitters
- Modular Countersink Drilling
- Nozzles & Needles
- AFP / ATL Blades
- Tungsten Carbide Core Pins for Injection Molding
- Micro Manufacturing
- Super-Hard Wear Parts

SOLUTIONS

Modular Countersink

- Laser Focused on <u>The Cutting</u> of Composite
 Pieces and Structures
 - Countersink Drilling
 - Fiber Layup ATL & AFP

AFP / ATL Cutter

Modular Countersink

SOLUTIONS

- Modular Countersink Drill Holders
 - Straight Shank Drills
 - Coolant Fed Design (Fit Any Tool Holding)
 - Countersink Inserts (PCD or WC)
 - Custom forms & sizes
 - 4x life of Carbide Coated Drills
 - Regrind Program
 - Applications
 - Major Composite Aircrafts

- Reverse Engineered Aftermarket & Fives OEM
- Regrind Program
- Applications

RAFTS

All major OEM composite layup machines

STRATEGY

- Optimize Costs to Produce Composites Structures Through the Cutting Application
 - Systematic Enhancement of Life & Performance
 - Blade Usage
 - Erase Cutter Errors that Lead to Poor Part Quality
 - Erase Cutter Changeout Downtime
 - Reuse & Recycle
 - Sustainability
 - Further Reduce Cost per Cut

LIFE & PERFORMANCE

Life & Performance

- Reduce Cut Quality Issues
- Reduce Cost per Cut
- Design for Manufacturability
 - Reduce Cost vs OEM alternatives
- **Design Considerations**
 - **Cutting Edge Geometry**
 - Holistic Cutting-Edge Considerations RPM, Actuation, Surface Finish, Anvil Design, etc.
 - Material Choice PCD, WC, Coating
 - Blade Holding Design

BLADE APPLICATION

Blade Application

- **Changeout Ergonomics**
 - Setup / Touch-Off
 - Reduce Downtime
 - Align life with Blade Changeout or CCR Changeout Intervals
 - Tool Crib Handling

REGRIND & RECYCLE

Regrind & Recycle

- Minimum Regrind Length
- Tool Crib Return Program
 - Visual Management Packaging
 - Return & Reuse w/o Chipping

CASE STUDY #1

Countersink Drilling - Composite Fuselage Section w/ Al Stack

\$25.000.00

- Modular Countersink vs Integral
 - WC Coated Integral Drill (Startup Cost = \$0)
 - Life = 30,000 holes
 - Cost = \$1,200 each
 - Modular (Startup Cost =\$1,000)
 - WC Coated Drill
 - Life = 30,000 holes
 - Cost = \$500 each
 - PCD Insert
 - Life = 90,000 holes
 - Cost = \$125 each
 - Regrind = \$75 each (3x)

Holes Drilled

CASE STUDY #2

AFP Cutting – Composite Fuselage

Replaceable AFP Blade vs Brazed AFP Blade

32 Blades / Tow Lanes in CCR

- Brazed AFP Blade
 - Life = 25,000 Cuts
 - Cost = \$125 each
 - Regrind = \$40 each (3x)
- Replaceable AFP Blade Modular
 - Life = 35,000 Cuts
 - Cost = \$65 each
 - Regrind = \$40 each (3x)
 - Base
 - Life = Theoretical Infinite (no wear)
 - Cost = \$125 each

Barrel = 27k -31k Cuts @ 35k Blade Life Equates to <u>O Downtime</u>

